ANSWER
![x=\sqrt[]{(3)/(2)},x=-\sqrt[]{(3)/(2)},x=\sqrt[]{2}i,x=-\sqrt[]{2}i](https://img.qammunity.org/2023/formulas/mathematics/college/7743o410zddhxst4b9s28xr4askrqmq6re.png)
Step-by-step explanation
We want to solve the given polynomial by U-Substitution:

To do this, we make the following substitution:

The polynomial then becomes:

Solve the quadratic equation by factorization:

Recall that:
![\begin{gathered} u=x^2 \\ \Rightarrow x=\pm\sqrt[]{u} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/divp1irkx0xjwj90nm5y4nb0rcew6k6s20.png)
Therefore, we have that:
![\begin{gathered} x=\pm\sqrt[]{(3)/(2)};x=\pm\sqrt[]{-2}=\pm\sqrt[]{2\cdot-1} \\ x=\pm\sqrt[]{(3)/(2)};x=\pm\sqrt[]{2}i \\ \Rightarrow x=\sqrt[]{(3)/(2)},x=-\sqrt[]{(3)/(2)},x=\sqrt[]{2}i,x=-\sqrt[]{2}i \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qdz4k7qsog5lnopzbkb13b25igki9yuwrk.png)
Those are the solutions of the polynomial.