Given:
The kinetic energy of the charged particle is,
![\Delta U=0.042\text{ J}](https://img.qammunity.org/2023/formulas/physics/college/luzansu578751beqa03o4r7u0gcgn4yvh9.png)
Point A has electric potential,
![V_A=700.0\text{ V}](https://img.qammunity.org/2023/formulas/physics/college/jqbma6msptff0s8jqr5ham2f490o4pv3ew.png)
The potential at point B is,
![V_B=200.0\text{ V}](https://img.qammunity.org/2023/formulas/physics/college/phetwq7x0r8npzlv5xnwpfc1ze040wkonh.png)
To find:
The magnitude and the sign of the charge
Step-by-step explanation:
The energy of the charged particle is,
![q\Delta V](https://img.qammunity.org/2023/formulas/physics/college/1besr04brnu1u9cf0jxt0onbwsvf33dotp.png)
which is equal to,
![\Delta U](https://img.qammunity.org/2023/formulas/physics/college/lg80iknid7u2i9v0kokoxtmxglw3i37s8u.png)
As the charged particle is moving from higher to lower potential region, the charge is positive. So, we can write,
![\begin{gathered} q(V_A-V_B)=0.042 \\ q(700.0-200.0)=0.042 \\ q=(0.042)/(700.0-200.0) \\ q=8.4*10^(-4)\text{ C} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/qyvhx7nauool2klsi4hvbwhi7u4m9azw3w.png)
Hence, the charge is positive and the magnitude is,
![8.4*10^(-4)\text{ C}](https://img.qammunity.org/2023/formulas/physics/college/hfw1ra6kao1s5lujrt8f3kwli8ypv7hak8.png)