Solution:
Given the general exponential function expressed as
![y=ab^x\text{ --- equation 1}](https://img.qammunity.org/2023/formulas/mathematics/college/bmdeveh82l4412d8fmov5fzwq8a7d50g4f.png)
If the function passes through the points (x₁, y₁) and (x₂, y₂), we can defined the exponential function by solving for a and b.
This is done by substituting the values of x and y into the general exponential function as shown below:
![\begin{gathered} y_1=a(b)^(x_1)\text{ ----- equation 2} \\ y_2=a(b)^(x_2)\text{ ------ equation 3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8jru2c3tmfzqx6hrw3c5mqyxm1riyzqczo.png)
Given that the graph of the exponential function passes through (2,1) and (3,12), this implies that
![\begin{gathered} x_1=2 \\ y_1=1 \\ x_2=3 \\ y_2=12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tub8khuey5qolrfkjdmtbgdh8vu4lwiy5l.png)
Thus, substituting the x and y values into equation 1 , as done in equation 2 and 3, we have
![\begin{gathered} 1=a(b)^2\text{ ----- equation 4} \\ 12=a(b)^3\text{ ------ equation 5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jzsq7udbjeuw2afj1emklvj6701n2gg57j.png)
Divide equation 5 by equation 4,
![\begin{gathered} (12)/(1)=(a(b)^3)/(a(b)^2) \\ \Rightarrow12=b \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/heu1xpo2bjx1es2h5jawupx1d989f9pg1t.png)
Substitute the obtained value of b into either equation 4 or 5.
Substituting into equation 4, we have
![\begin{gathered} 1=a(12)^2\text{ } \\ divide\text{ both sides by }12^2 \\ \Rightarrow(1)/(12^2)=(a(12)^2)/(12^2) \\ a=(1)/(144) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2mlz8j66oiq42qmabsg6n7ze2aelu26xuu.png)
Substitute the obtained values of a and b into equation 1.
From equation 1,
![\begin{gathered} y=a(b)^x \\ where \\ a=(1)/(144) \\ b=12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/l0q2g90hfajkhaf71hmraxzkipe0908cgv.png)
Thus, the exponential function is expressed as
![y=(1)/(144)(12)^x](https://img.qammunity.org/2023/formulas/mathematics/college/lwdd1n7272im07eznynrsxmvcu4vx6xkqo.png)