ANSWER :
The answer is A. y^4 - 12y^3 + 54y^2 - 108y + 81
EXPLANATION :
From the problem, we have the expression :
![(y-3)^4](https://img.qammunity.org/2023/formulas/mathematics/college/xjhsk4mcyc7stwftv5zxscr9qcuclkjrqj.png)
we can write it as :
![(y-3)^4=[(y-3)^2]^2](https://img.qammunity.org/2023/formulas/mathematics/college/ikr6x220yucbtnm9gd3lrl0x7ffqsgcb03.png)
Perform the first power to the 2nd using :
![(a^2\pm b^2)=a^2\pm2ab+b^2](https://img.qammunity.org/2023/formulas/mathematics/college/2wje45svzcyyf7rgy5rpb00myf7rw7nolv.png)
![[(y-3)^2]^2=(y^2-6y+9)^2](https://img.qammunity.org/2023/formulas/mathematics/college/ivs4o4vj5oeczfixyedc5sxeqqz1g6syn6.png)
Next is to perform the next square :
![(y^2-6y+9)^2=(y^2-6y+9)(y^2-6y+9)](https://img.qammunity.org/2023/formulas/mathematics/college/sf6kvcmg6m36106nt57rw8l3qacs0cb4tc.png)
We can distribute each term of the first parenthesis to the second parenthesis as :
![(a+b+c)(a+b+c)=a(a+b+c)+b(a+b+c)+c(a+b+c)](https://img.qammunity.org/2023/formulas/mathematics/college/yeoxzntjxszrto4p6b896aq2waylkqi0fj.png)
Then :
![\begin{gathered} (y^2-6y+9)(y^2-6y+9) \\ =y^2(y^2-6y+9)-6y(y^2-6y+9)+9(y^2-6y+9) \\ \text{ Then simplify :} \\ =(y^4-6y^3+9y^2)-(6y^3-36y^2+54y)+(9y^2-54y+81) \\ \text{ Combine like terms :} \\ =y^4-6y^3-6y^3+9y^2+36y^2+9y^2-54y-54y+81 \\ =y^4-12y^3+54y^2-108y+81 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qdub16a30c4xo999vpsi7ujt4j3dmm410j.png)