80.4k views
5 votes
The magnetic filed of 17.5 mT exists inside a solenoid of length 12.0 cm when the electric current of 250. mA flows in the coil. How many turns the solenoid has?

User Cuga
by
3.3k points

1 Answer

6 votes

Given data:

* The magnetic field inside the solenoid is,


\begin{gathered} B=17.5\text{ mT} \\ B=17.5*10^(-3)\text{ T} \end{gathered}

* The length of the solenoid is,


\begin{gathered} l=12\text{ cm} \\ l=12*10^(-2)\text{ m} \end{gathered}

* The current through the solenoid is,


\begin{gathered} I=250\text{ mA} \\ I=250*10^(-3)\text{ A} \end{gathered}

Solution:

The magnetic field inside the solenoid is,


B=\mu_oNI

where N is the number of turns in the solenoid,


\mu_o\text{ is the permeability of free space}

Substituting the known values,


\begin{gathered} 17.5*10^(-3)=4\pi*10^(-7)* N*250*10^(-3) \\ 17.5*10^(-3)=3141.59*10^(-10)* N \\ N=(17.5*10^(-3))/(3141.59*10^(-10)) \\ N=0.00557042*10^(-3+10) \\ N=0.00557042*10^7 \\ N=55.7042*10^3 \\ N=55704.2 \\ N\approx55704 \end{gathered}

Thus, the number of turns in the solenoid is 55704.

User Benhatsor
by
3.5k points