172k views
4 votes
Solve this equation for X. If necessary, round your answer to the nearest integer
(2x + 2)^{ (1 )/(3) = - 2

User Brette
by
4.6k points

2 Answers

3 votes
the answer is x = 1 :)
User Nadina
by
3.8k points
5 votes

Answer

x = 1

Step-by-step explanation:

Given the following equation


\begin{gathered} (2x+2)^{(1)/(2)}=\text{ -2} \\ \text{According to the law of indicies} \\ x^{(1)/(2)}\text{ = }\sqrt[]{x} \\ (2x+2)^{(1)/(2)}\text{ = }\sqrt[]{(2x\text{ + 2)}} \\ \text{Step 1: Take the square of both sides} \\ \sqrt[]{(2x\text{ + 2) }}\text{ = -2} \\ \sqrt[]{(2x+2)^2}=-2^2 \\ 2x\text{ + 2 = 4} \\ \text{Collect the like terms} \\ 2x\text{ = 4 - 2} \\ 2x\text{ = 2} \\ \text{Divide both sides by 2} \\ (2x)/(2)\text{ = }(2)/(2) \\ x\text{ = 1} \end{gathered}

Therefore, x = 1

User EBlake
by
4.9k points