Given a table showing the number of 4 different coins
To Determine: Probability of selecting nickel, followed by dime, without replacement
Solution
The total of balls would be
![\begin{gathered} \text{Penny}=====8 \\ \text{Nickel}=====6 \\ \text{Dime}======8 \\ \text{Quarter}=====7 \\ \text{Total}=======29 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8j2wxduvkav7dqay7rjl0s7c9qy7ft6r9e.png)
The probability of selecting nickel, followed by dime, without replacement is
![P(ND)=(6)/(29)*(8)/(28)](https://img.qammunity.org/2023/formulas/mathematics/college/hjwhb2bbut52q2xny0qk5ucqro2slffugk.png)
![\begin{gathered} P(ND)=(48)/(812)=0.0591133 \\ \approx0.059(nearest\text{ thousandths}) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xybl8fafe0j1viv9jfayhmckcokxzphoqy.png)
Hence, the probability of selecting nickel, followed by dime, without replacement expressed to the nearest thousandth is 0.059