Answer:
![\text{ T.A=28}\sqrt[]{3}\approx48.5](https://img.qammunity.org/2023/formulas/mathematics/high-school/blsk7o9xwc09fa7r7fgpu4248pyaqz5jpe.png)
Explanation:
The total area of a regular triangular pyramid is represented by the following expression:

Then, for the area of the base:
As a first step, calculate the height of the triangles with the Pythagorean theorem:
![\begin{gathered} h=\sqrt[]{4^2-2^2} \\ h=\sqrt[]{12}=2\sqrt[]{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/uchlx6iak3fhmhs16efaae08d96qj7ikth.png)
![\begin{gathered} A=(1)/(2)\cdot\text{base}\cdot\text{height} \\ A=(1)/(2)\cdot4\cdot2\sqrt[]{3} \\ A=4\sqrt[]{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/9jt3vs44fona93xynidpgbldaojgk05smv.png)
So, for the total area:
![\begin{gathered} \text{ T.A=4}\sqrt[]{3}+(1)/(2)\cdot12\cdot4\sqrt[]{3} \\ \text{ T.A=28}\sqrt[]{3}\approx48.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/i65arsvacbi8fdy2b4incrobu0ngd6kcdq.png)