The answer is very simple. .
![h(t)=-16t^2+6\text{ }](https://img.qammunity.org/2023/formulas/mathematics/college/r0f4sv230u2zpg32n0kkb84o2xim31k1i7.png)
In this equation the heights values are substituted to determine the times.
For h = 2 feet
![\begin{gathered} 2=-16t^2\text{ + 6 } \\ -16t^2\text{ = 2 - 6} \\ -16t^2\text{ = -4} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hqrtl1zv0bdptuglto8py9jf52c4bod9wp.png)
![\begin{gathered} t^2\text{ = }\frac{-4}{-16\text{ }} \\ t^2\text{ = }(1)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f566rlubplrcpc65hs0d5ca9sygb3a68gi.png)
![t\text{ = }\sqrt[]{(1)/(4)}\text{ = }0.5\text{ seconds}](https://img.qammunity.org/2023/formulas/mathematics/college/c14slbcneozyx95luswsdj5cjym12dm6qv.png)
That would be the first time corresponding to the height of 2 feet.
We still need to calculate the time for the other height.
For h = 5 feet
![-16t^2+6\text{ =5}](https://img.qammunity.org/2023/formulas/mathematics/college/8cy8jbt9altj7qkvv1hujwiwekifrkvsed.png)
![\begin{gathered} -16t^2\text{ = 5 -6 } \\ -16t^2\text{ = -1} \\ t^2\text{ = }(1)/(16) \\ t\text{ = }\sqrt[]{(1)/(16)}\text{ = }0.25\text{ seconds} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6b3wepw2lfr76uuegjv5up4srjro9kh26l.png)
The answer is: Riley should try to catch the ball between 0.25 and 0.5 seconds.