Step 1: Write out the formula for the distance between two points on the Cartesian plane
![d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/be685jmxw05hm2tq94m5iuge2xjynn1hfn.png)
![\begin{gathered} \text{ Where} \\ (x_1,y_1)\text{ is a point on the Cartesian plane} \\ (x_2,y_2)\text{ is another point on the Cartesian plane} \\ d=\text{ the distance betw}een\text{ points (x1,y1) and (x2,y2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cticedam2x70sd7ufov4siarx805g8arqe.png)
Step 2: Use the formula to find the distance KM between points K and M.
In this case,
![\begin{gathered} (x_1,y_1)=(-6,-2) \\ (x_2,y_2)=(2,6_{}) \\ \text{ Therefore,} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8ums7r6gyzhx8lpbjrqrd1z9r5pd48df44.png)
![\begin{gathered} d=\sqrt[]{(2-(-6))^2+(6-(-2))^2}=\sqrt[]{(2+6)^2+(6+2)^2} \\ d=\sqrt[]{8^2+8^2}=\sqrt[]{64+64}=\sqrt[]{128}\approx11.3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/730ypp058vi0faxkf7xjylr7l51ih2sshh.png)
Hence, KM = 11.3 units
Step 3: Use the formula to find the distance KL between points K and L.
In this case,
![\begin{gathered} (x_1,y_1)=(-6,-2) \\ (x_2,y_2)=(6,-4_{}) \\ \text{ Therefore,} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uiv31q48wd97ls50m20twptgwdmnaa4eh1.png)
![\begin{gathered} d=\sqrt[]{(6-(-6))^2+(-4-(-2))^2}=\sqrt[]{(6+6)^2+(-4+2)^2} \\ d=\sqrt[]{12^2+(-2)^2}=\sqrt[]{144+4}=\sqrt[]{148}\approx12.2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tr12xftf6rfb0m8mb8k6tv9gw1yjt6nkpp.png)
Hence, KL = 12.2 units
Step 4: Use the formula to find the distance LM between points L and M.
In this case,
![\begin{gathered} (x_1,y_1)=(6,-4) \\ (x_2,y_2)=(2,6_{}) \\ \text{ Therefore,} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tcak0qs5qqguhsfv28qe3at1e7m2yljlw5.png)
![\begin{gathered} d=\sqrt[]{(2-6)^2+(6-(-4))^2}=\sqrt[]{(-4)^2+(6+4)^2} \\ d=\sqrt[]{16^{}+(10)^2}=\sqrt[]{16+100}=\sqrt[]{116}\approx10.8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d7rh5lz8lieexnenelyabvmhqg4xdwgz60.png)
Hence, LM = 18.9 units
Step 4: Find the perimeter of the triangle KLM
The perimeter of the triangle is given by the sum of the sides of the triangle.
That is,
![\text{ the perimeter }=KL+KM+LM](https://img.qammunity.org/2023/formulas/mathematics/college/htks6loavr15kecj5ru5wcjrur7wkp9g7r.png)
Therefore,
![\text{ the perimeter }=11.3+12.2+10.8=34.3\text{ units}](https://img.qammunity.org/2023/formulas/mathematics/college/1keczs1iwn0ksrbw0hxbmd3qvk66ys67w3.png)
Hence, the perimeter of triangle KLM is 34.3 units