Given:
The universal set is,
![U=\lbrace2,3,6,7,8\rbrace](https://img.qammunity.org/2023/formulas/mathematics/high-school/52rlqugcqquli4cjgzyv6ioq68vpwulgg7.png)
The set C is,
![C=\lbrace6,8\rbrace](https://img.qammunity.org/2023/formulas/mathematics/high-school/p2hje3ucaze1b34p1ia2t3vbuyzev5v0pw.png)
The set D is,
![D=\lbrace6,7\rbrace](https://img.qammunity.org/2023/formulas/mathematics/high-school/g01txacvlz0twz60mmm4ffl9htvgbiuo4i.png)
Required:
To find the sets in roster form.
![\begin{gathered} (a)C\cup D^(\prime) \\ (b)(C\cap D)^(\prime) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jywrr08w0o8s7laci3x8e0zbmz176aqhz5.png)
Step-by-step explanation:
The sets given are,
![\begin{gathered} U=\lbrace2,3,6,7,8\rbrace \\ C=\lbrace6,8\rbrace \\ D=\lbrace6,7\rbrace \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/gfu5swq6j61bd4nc3u5ojefqbhvzp79xzi.png)
Then
(a) The set D' is,
![D^(\prime)=\lbrace2,3,8\rbrace](https://img.qammunity.org/2023/formulas/mathematics/high-school/h0bagfn3kpyh3gc471kt1itr9hbdyahq6f.png)
Thus, the required set is given by,
![\begin{gathered} C\cup D^(\prime)=\lbrace6,8\rbrace\cup\lbrace2,3,8\rbrace \\ \Rightarrow C\cup D^(\prime)=\lbrace2,3,6,8\rbrace \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/9rjbejyd2wn3y5mo3lcnaalurlp5sbv7j9.png)
(b) The intersection of C and D is given by,
![C\cap D=\lbrace6\rbrace](https://img.qammunity.org/2023/formulas/mathematics/high-school/c0zpabki2yqpyyd2q8qcci95slc1b3hund.png)
Thus, the compliment of the above set is the required set given by,
![(C\cap D)^(\prime)=\lbrace2,3,7,8\rbrace](https://img.qammunity.org/2023/formulas/mathematics/high-school/qjryg0s405f2bpwtca1cw2fxc4mfx2jc87.png)
Final Answer:
The required sets in roster form are,
![\begin{gathered} (a)C\cup D^(\prime)=\lbrace2,3,6,8\rbrace \\ (b)(C\cap D)^(\prime)=\lbrace2,3,7,8\rbrace \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/n4jt8iu4q29erthf6mt6ljnbnj6iel4qcx.png)