The given expression is:
![\csc b(\csc b+\cot b)](https://img.qammunity.org/2023/formulas/mathematics/college/bv5sri1ylytknwlxoblkyzq8wlb6n2xegt.png)
It is required to simplify the expression to a single trigonometry function.
To do this, trigonometric identities have to be applied to simplify the expression.
The following trigonometry identities will be used:
![\begin{gathered} \csc b=(1)/(\sin b) \\ \cot b=(\cos b)/(\sin b) \\ \sin^2b=1-\cos^2b \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/smvi8k2iard8ajop4keg1pbl9gdtpyx11m.png)
Use the inverse trigonometry identities to rewrite the expression as:
![\begin{gathered} (1)/(\sin b)((1)/(\sin b)+(\cos b)/(\sin b)) \\ Simplify\text{ the sum in parentheses:} \\ =(1)/(\sin b)((1+\cos b)/(\sin b)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1yn58ytq43mhrj26j7ivw5q4fawt42piad.png)
Multiply the expressions:
![(1+\cos b)/(\sin^2b)](https://img.qammunity.org/2023/formulas/mathematics/college/u9p8jv52o9ojins7qeg5su8be0mcovytx6.png)
Rewrite the denominator using the trigonometric identity:
![(1+\cos b)/(1-\cos^2b)](https://img.qammunity.org/2023/formulas/mathematics/college/1ptwguldmeddq8skoyots23nmdf4f8eok0.png)
Rewrite the denominator further using the difference of two squares of binomials:
![(1+\cos b)/((1+\cos b)(1-\cos b))](https://img.qammunity.org/2023/formulas/mathematics/college/8vqgji5tbc5pa86gxiurudng7g81f8l7r6.png)
Cancel out like terms in the numerator and denominator, so the expression becomes:
![(1)/(1-\cos b)](https://img.qammunity.org/2023/formulas/mathematics/college/62oc6cphruarcxapoynyjz1zzjmoc0jfpy.png)
Hence, the required answer.