128k views
1 vote
Sec(3x - 15) = csc(14x + 3)

User AFRC
by
7.9k points

1 Answer

2 votes

To solve the equation for x we have to express the equation in term of only one trigonometric function, and for doing this we use the identies.


\begin{gathered} \sec (x)=(1)/(\cos(x)) \\ \csc (x)=\frac{1}{\text{ sin(x)}} \end{gathered}

so in our problem would be:


\begin{gathered} \sec (3x-15)=\csc (14x+3) \\ \sec (3x-15)-\csc (14x+3)=0 \\ (1)/(\cos(3x-15))-\frac{1}{\text{sin}(14x+3)}=0 \end{gathered}

now we can do de subtraction:


\frac{\text{sen}(14x+4)-\cos (3x-15)}{\cos (3x-15)\text{sin}(14x+3)\text{ }}=0

then we can use the identity of adition of angles:


\begin{gathered} \text{Sin(}14x+4)=sin(14x)\cos (4)+sin(4)\cos (14x) \\ \cos (3x-15)=\cos (3x)\cos (15)+\text{ sin(3x)sin(15)} \end{gathered}

and replace that in our problem:


\begin{gathered} \frac{\text{sin}(14x)\cos (4)+\text{sin}(4)\cos (14x)-\cos (3x)\cos (15)-\text{sin}(3x)\text{sin}(15)}{(\cos (3x)\cos (15)+\text{sin}(3x)\text{sin}(15))(\text{sin}(14x)\cos (4)+\text{sin}(4)\cos (14x)} \\ =0 \end{gathered}

now we can simplify the expression:


\begin{gathered} \text{sin}(14x)\cos (4)+\text{sin}(4)\cos (14x)-\cos (3x)\cos (15)-\text{sin}(3x)\text{sin}(15) \\ =\text{ cos(3x)cos(15)sin(14x)cos(4)+cos(3x)cos(15)sin(4)cos}(14x) \\ +\text{sin}(3x)\text{sin}(15)\text{sin}(14x)\cos (4)+\text{sin}(3x)\text{sin}(15)sin(4)\cos (14x) \end{gathered}

Finaly, weput all the expressions with x to the left of the equation:


\begin{gathered} \text{sin}(14x)\cos (4)+\text{sin}(4)\cos (14x)-\cos (3x)\cos (15)-\text{sin}(3x)\text{sin}(15) \\ -\text{cos(3x)cos(15)sin(14x)cos(4)}-\text{cos(3x)cos(15)sin(4)cos}(14x) \\ -\text{sin}(3x)\text{sin}(15)\text{sin}(14x)\cos (4)-\text{sin}(3x)\text{sin}(15)sin(4)\cos (14x)=0 \end{gathered}

and there is not posible to simplify this expresion

User Lawanna
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories