Let's take a look at what's going on:
We know the perimeter of the playground (the sum of the lenght of its sides) has to be 460ft. Thereby,
![\begin{gathered} x+y+x+y=460 \\ \rightarrow2x+2y=460 \\ (\text{Equation 1)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9xp659pqyqmtfbquqvpy0fhvlz78gtolie.png)
And the area has to be at least 8600 square ft. Remember that the are of a rectangle is the multiplication between the lenght of its base and the lenght of its height. Therefore,
![\begin{gathered} xy\ge8600 \\ \text{ (Equation 2)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zw0arzejeg0qqy0a2jtwvemfbrf40y59xv.png)
Now, let's clear x from (Equation 1) and substitute in (Equation 2). This will be our Algebraic method
![2x+2y=460\rightarrow2x=460-2y\rightarrow x=230-y](https://img.qammunity.org/2023/formulas/mathematics/college/xzw8x31ihg7jqw7q8mdlr8bp1sr3incdsh.png)
![\begin{gathered} xy\ge8600\rightarrow(230-y)y\ge8600 \\ \rightarrow230y-y^2\ge8600\rightarrow0\ge y^2-230y+8600 \\ \rightarrow y^2-230y+8600\le0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vdcxgduj7luoprrfva1gq3cd0h9t250q0l.png)
We get a quadratic inequality. We'll solve it as following:
0. Complete the square:
![\begin{gathered} y^2-230y+(115^2)+8600\le115^2 \\ \rightarrow(y-115)^2+8600\le115^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/80baia7pjk0bou4fzupu6i5d3y20ufd8tr.png)
2. Simplify:
![\begin{gathered} (y-115)^2+8600\le115^2 \\ \rightarrow(y-115)^2\le115^2-8600 \\ \rightarrow(y-115)^2\le4625 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pe5by6wjlg88k54ixui61lyabby1fl4jgr.png)
Remember that
![a^2\le b\rightarrow-\sqrt[]{b}\le a\le√(b)](https://img.qammunity.org/2023/formulas/mathematics/college/sfmr0linennmc5nu1kyj44z6zsibocsb2s.png)
3. Use this property:
![\begin{gathered} (y-115)^2\le4625 \\ \rightarrow-\sqrt[]{4625}\le y-115\le\sqrt[]{4625} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k56pwqg1l0jxqgo8adul038og2zbmwwpmd.png)
4. Add 115:
![-\sqrt[]{4625}+115\le y-115+115\le\sqrt[]{4625}+115](https://img.qammunity.org/2023/formulas/mathematics/college/bxrycxdl5kl8zupss3dryhyo39f8svtboa.png)
5. Solve:
![47\le y\le183](https://img.qammunity.org/2023/formulas/mathematics/college/4w5sva0b0ivj77quo0eqj6oa9un7lgct5m.png)
Now we know that the height can be between 115ft and 183ft. We've already cleared x, so let's substitude for both the values we've calculated:
![\begin{gathered} x=230-y \\ \rightarrow x=230-47\rightarrow x=183 \\ \rightarrow x=230-183\rightarrow x=47 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qrr4uxanpj3ln8k4spjka0pbtsoupmyj4s.png)
Thereby, we've calculated the lenght (x) of the playground has to be between 47ft and 183ft