The area of a regular pyramid is:
![Ap=(1)/(3)(Ab\cdot h)](https://img.qammunity.org/2023/formulas/mathematics/college/n1q18pmz34hu44yma4vr3y2lix5vyb9gui.png)
Where:
Ap = Area of the regular pyramid
Ab = Area of the basis
h = height of the pyramid
And, Ab is:
![Ab=(n)/(2)\cdot(s\cdot a)](https://img.qammunity.org/2023/formulas/mathematics/college/xau89vnklviwssazuuuzca6urqumdpsta1.png)
Where:
n = number of sides of the polygon
s = measure of the side of the polygon
a = apothem
So, to solve this question, follow the steps below.
Step 01: Find Ab.
To find Ab, let's extract the info from the problem:
n = 6
s = 12 cm.
a = 10.4 cm.
Then,
![\begin{gathered} Ab=(6)/(2)\cdot(12\cdot10.4) \\ Ab=3\cdot(124.8) \\ Ab=374.4cm^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/stpqqcj6sxim095iis6fqwyfjjua42bamu.png)
Step 02: Use Ab to find Ap.
From the problem:
h = 36 cm.
Then,
![\begin{gathered} Ap=(1)/(3)(374.4\cdot36) \\ Ap=4492.8cm^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6us1amjtbowscd8c5pmag8z77w5g0thfct.png)
Answer: A) 4492.8 cm³.