104k views
5 votes
Let A =(3, 2) and B = (7, -10). What is the displacement vector that moves point A onto point B? What vector moves B onto A? Draw a diagram.

User StLia
by
7.3k points

1 Answer

5 votes

Given:

The coordinates of point A,( x1, y1)=(3, 2)

The coordinates of point B, (x2, y2)=(7, -10).

The displacement vector that moves from point A onto B can be found as,


\begin{gathered} \vec{BA}=(x2-x1)\hat{i}+(y2-y1)\hat{j} \\ =(7-3)\hat{i}+(-10-2)\hat{j} \\ =4\hat{i}-12\hat{j} \end{gathered}

Hence, the displacement vector tha moves point A onto B is,


4\hat{i}-12\hat{j}

The displacement vector that moves point B onto A can be found as,


\begin{gathered} \vec{AB}=(x1-x2)\hat{i}+(y1-y2)\hat{j} \\ =(3-7)\hat{i}+(2-(-10)\hat{j} \\ =-4i+12\hat{j} \end{gathered}

The displacement vector BA can be drawn as,

The displacement vector AB can be drawn as,

The displacement vector from point A onto B can be found as,


\begin{gathered} \vec{BA}=\begin{bmatrix}{x2-x1} & {} & {} \\ {y2-y1} & {} & {} \\ {} & {} & \end{bmatrix} \\ =\begin{bmatrix}{7-3} & {} & {} \\ {-10-2} & {} & {} \\ {} & {} & \end{bmatrix} \\ =\begin{bmatrix}{4} & {} & {} \\ {-12} & {} & {} \\ {} & {} & \end{bmatrix} \end{gathered}

The displacement vector from point B onto A can be found as,


\begin{gathered} \vec{AB}=\begin{bmatrix}{x1-x2} & {} & {} \\ {y1-y2} & {} & {} \\ {} & {} & \end{bmatrix} \\ =\begin{bmatrix}{3-7} & {} & {} \\ {2-(-10)} & {} & {} \\ {} & {} & \end{bmatrix} \\ =\begin{bmatrix}{-4} & {} & {} \\ {12} & {} & {} \\ {} & {} & \end{bmatrix} \end{gathered}

Let A =(3, 2) and B = (7, -10). What is the displacement vector that moves point A-example-1
Let A =(3, 2) and B = (7, -10). What is the displacement vector that moves point A-example-2
User Marvelous
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories