Solution:
To find the slope, m, of a straight line, the formula is
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/78uaqhwt0aws3qfwxigaftpihnmb1gzxtp.png)
For line AC,
Picking coordinates from the graph
![\begin{gathered} (x_1,y_1)\Rightarrow(2,5) \\ (x_2,y_2)\Rightarrow(4,4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nfvbbt58sb776ph3zdp5ffdkhhj804hfs9.png)
Substitute the coordinates into the formula to find the slope, m, of a straight line
![m=(4-5)/(4-2)=(-1)/(2)=-(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/college/8cx44rnea8r85d67vc8cr2d2u6etuwbyb6.png)
For line DC
Picking coordinates from the graph
![\begin{gathered} (x_1,y_1)\Rightarrow(4,4) \\ (x_2,y_2)\Rightarrow(6,8) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/t08vwc34g2u9ngvb65nzchf4csdq83gy2n.png)
Substitute the coordinates into the formula to find the slope, m₁, of a straight line
![m=(8-4)/(6-4)=(4)/(2)=2](https://img.qammunity.org/2023/formulas/mathematics/college/x6cg7800yuf8xjjjq7tfif1bf2uo9zlwpw.png)
Line AC and DC are perpendicular, i.e.
![m* m_1=-(1)/(2)*2=-1](https://img.qammunity.org/2023/formulas/mathematics/college/k0vimwbqr7ihqpn34r141kt8xmeho7sa4c.png)
Hence,
![mm_1=-1](https://img.qammunity.org/2023/formulas/mathematics/college/7gpu7l9p8n69xxadikhnrtf0zqhxj65ivz.png)