Given:
Fundamental frequency = 262 Hz.
Temperature = 20 degrees celcius
Let's find the length of the pipe.
Apply the resonant frequency:
![f_o=(v)/(2L)](https://img.qammunity.org/2023/formulas/physics/college/qrcr5xozpbofwg0e9y0y480pv02cdh0iwm.png)
Where:
L is the length.
To find the length, rewrite the equation for L:
![L=(v)/(2f_o)](https://img.qammunity.org/2023/formulas/physics/college/au5n3xpojv7cs2wv8etn0t7we2xmqo2fyl.png)
Where v is te speed, to find the speed, we have:
![\begin{gathered} v=331\sqrt[]{1+(T)/(273)} \\ \\ \text{Where:} \\ T=20^0c \\ \\ v=331\sqrt[]{1+(20)/(273)} \\ \\ v=331\sqrt[]{1+0.07326} \\ \\ v=331(1.03598) \\ \\ v=342.9\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/xiylcsz6gderpnfvqi2uluc7446tbc3nxt.png)
Thus, to find the length, we have:
![\begin{gathered} L=(342.9)/(2*262) \\ \\ L=(349.2)/(524) \\ \\ L=0.67\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/p8t2zatkz3aujn4caikph7jwdpcsjdpusg.png)
Therefore, the length of the pipe is 0.67 m.
ANSWER:
0.67 m