First, find the weight of the object.
W = m g = 900 x 9.8 = 8,820 N
T2x = -t2 cos 20
t1 x = t1cos 40
mgx= 0
T2y= t2 sin 20
t1y= t1 sin 40
mgy= - mg
X and y components of resultant (R)
Rx = t1x -t2x + mgx
Rx= -t2 cos 20 + t1cos 40 (3)
Ry = t2 sin 20 + t1 sin 40 - mg(2)
Rx, and Ry = 0
0 = -t2 cos 20 + t1cos 40 (3)
0= t2 sin 20 + t1 sin 40 - mg (4)
Solve (3)
0 = -t2 cos 20 + t1cos 40
t2 cos 20 = t1 cos 40
t2 = t1 cos40/cos20
t2 = 0.815 t1
Substitute t2 in 4
0 = t2 sin 20 + t1 sin 40 - mg
0 = (0.815 t1) sin 20 + t1 sin 40 - 8,820
0= t1 ( 0.815 sin 20 + sin 40 ) -8820
0 = 0.921 t1 -8820
8820 = .921 t1
t1 = 8820/0.921
t1= 9570.261N (option D)