32.2k views
5 votes
Match the expression on the left with the correct simplified expression on the right.

Match the expression on the left with the correct simplified expression on the right-example-1
User Jrey
by
7.8k points

1 Answer

3 votes

Given: The expression below


\begin{gathered} (((3x^3y^4)^3)/((3x^2y^2)^2))^2 \\ (((3x^4y^2)^4)/((3x^5y^2)^3))^2 \end{gathered}

To Determine: The matching expression to the given expressions

Solution

Let us simplify each of the expressions using exponents rule


\begin{gathered} Exponent-Rule1=(a^m)^n=a^(m* n) \\ Exponent-Rule2=((a^m)/(a^n))=a^(m-n) \end{gathered}

Applying the exponent rule 1 above to the given expressions


\begin{gathered} (3x^3y^4)^3=3^3x^(3*3)y^(4*3)=27x^9y^(12) \\ (3x^2y^2)^2=3^2x^(2*2)y^(2*2)=9x^4y^4 \end{gathered}
\begin{gathered} (3x^4y^2)^4=3^4x^(4*4)y^(2*4)=81x^(16)y^8 \\ (3x^5y^2)^3=3^3x^(5*3)y^(2*3)=27x^(15)y^6 \end{gathered}

Applying the exponent rule 2


((3x^(3)y^(4))^(3))/((3x^(2)y^(2))^(2))=(27x^9y^(12))/(9x^4y^4)=(27)/(9)x^(9-4)y^(12-4)=3x^5y^8
((3x^(4)y^(2))^(4))/((3x^(5)y^(2))^(3))=(81x^(16)y^8)/(27x^(15)y^6)=(81)/(27)x^(16-15)y^(8-6)=3xy^2

Let us not apply exponent rule 1 above


(((3x^(3)y^(4))^(3))/((3x^(2)y^(2))^(2)))^2=(3x^5y^8)^2=3^2x^(5*2)y^(8*2)=9x^(10)y^(16)
(((3x^(4)y^(2))^(4))/((3x^(5)y^(2))^(3)))^2=(3xy^2)^2=3^2x^2y^(2*2)=9x^2y^4

Hence, the matching is as shown below

Match the expression on the left with the correct simplified expression on the right-example-1
User Charles Smith
by
9.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories