Given the functions:
![\begin{gathered} f\mleft(x\mright)=x^3-3 \\ g\mleft(x\mright)=^3\sqrt[]{x+3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fjqi2kfxd6mroinb8gh9eaqtw2wbs8ejlm.png)
The functions are inverses of each other when:

so, we will find (fog)(x) and compare the result with the previous condition
So, We will substitute the function g(x) into the function f(x) instead of (x)
![\begin{gathered} (f\circ g)(x)=(^3\sqrt[]{x+3})^3-3 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w0jxpmvfjgivp7j19t2apc66qhun34xp4g.png)
simplify the function:

So, the final result is the same as the condition
so, the answer will be:
The functions are inverses of each other.