Step 1: Write out the given functions
![f(x)=(9)/(x),g(x)=(4)/(x+2)](https://img.qammunity.org/2023/formulas/mathematics/college/979l42w8n0d0e33g0o2d3m5o2tshr25jj1.png)
Step 2: Find 1/f and g/f
![(1)/(f)(x)=(x)/(9)](https://img.qammunity.org/2023/formulas/mathematics/college/1brurrdx4o2i2bp9wmtrpw4yqj7ek0obog.png)
Therefore,
![(g)/(f)(x)=(4)/(x+2)*(x)/(9)=(4x)/(9(x+2))](https://img.qammunity.org/2023/formulas/mathematics/college/brnqo0q0upyw7h34j5c20vrna11zfskrka.png)
The domain of f is (-∞, ∞) \ {0}.
The domain of g is (-∞, ∞)
If x + 2 = 0, then x = -2.
Therefore g/f is undefined at x = -2.
Hence, the domain of g/f is (-∞, ∞) \ {-2,0}.
Therefore, the domain of g/f is (-∞, -2) ∪ (-2, 0) ∪ (0, ∞)