To solve the problem, we need to apply the rule
The opposite angles of a parallelogram are equal
The adjacent angles of a parallelogram are supplementary
Hence, we can write:
![12x\text{ -11 = 10x + 7}](https://img.qammunity.org/2023/formulas/mathematics/college/yw61qj5417voi9r1ivgyhiwl6ncv3cuk4z.png)
Solving for x:
![\begin{gathered} Collect\text{ like terms} \\ 12x\text{ - 10x = 7 + 11} \\ 2x\text{ = 18} \\ Divide\text{ both sides by 2} \\ (2x)/(2)\text{ =}(18)/(2) \\ x\text{ = 9} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fnsyda7tupao3j48ix114zd2fgvi234urg.png)
Substitute the value of x into the expression for Q
![\begin{gathered} \angle Q\text{ = 12x - 11} \\ =\text{ 12 }*\text{ 9 - 11} \\ =\text{ 97}^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/muckhk2u7zum7hj8jdoeo00no5mb2v1t7d.png)
Solving for angle P
![\begin{gathered} \angle Q\text{ + }\angle P\text{ = 180} \\ \angle P\text{ = 180 - }\angle Q \\ \angle P\text{ = 180 - 97} \\ =\text{ 83}^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/krxqx2tngi6w56qbaf56v3k2v54h1lcedu.png)
Answer summary
![\begin{gathered} m\angle\text{ Q = 97}^0 \\ m\angle P\text{ = 83}^0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/88l4afn6jkyk0dgvi3y05gf1n3ry1lwxrb.png)