148k views
4 votes
About how many units apart are point S and point Q

User Majster
by
7.2k points

1 Answer

5 votes

The point S is at (-2,-8)

The point Q is at (8,7)

Distance formula is express as:


\text{ Distance=}\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2_{^{}}}

The coordinates are:


\begin{gathered} (x_1,y_1)=(-2,-8) \\ (x_2,y_2)=(8,7) \end{gathered}

SUbstitute the value and simplify for the distance


\begin{gathered} \text{ Distance=}\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2_{^{}}} \\ \text{Distance}=\sqrt[]{(8-(-2)^2+(7-(-8))^2} \\ \text{Distance}=\sqrt[]{(8+2)^2+(7+8)^2}_{} \\ \text{Distance}=\sqrt[]{10^2+15^2} \\ \text{Distance}=\sqrt[]{100+225} \\ \text{Distance}=\sqrt[]{325} \\ \text{Distance}=18.02\text{ unit} \end{gathered}

The point S and Q are 18.02 unit away

User Shuli
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories