114k views
4 votes
What is the solution to the system (1)x-y-2z=4(2)-x+2y+z=1(3)-x+y-3z=11

User Jo Sprague
by
7.6k points

1 Answer

3 votes

Step 1:

Write the system of equations

x - y - 2z = 4 (1)

-x + 2y + z = 1 (2)

-x + y - 3z = 11 (3)

Step 2:

From equation 1, make x subject of the relation and substitute in equation 2 to get equation 4 and equation 3 to get equation 5.


\begin{gathered} \text{From (1)} \\ x\text{ - y - 2z = 4} \\ x\text{ = 4 + y + 2z} \\ In\text{ (2) -x + 2y + z = 1} \\ -(4\text{ + y + 2z) + 2y + z = 1} \\ -4\text{ - y - 2z + 2y + z = 1} \\ y\text{ - z = 1 + 4} \\ y\text{ - z = 5 (4)} \\ In\text{ (2) -x + y - 3z = 11} \\ -(4\text{ + y + 2z) + y - 3z = 11} \\ -4\text{ - y - 2z + y - 3z = 11} \\ \text{Collect similar terms.} \\ -5z\text{ = 11 + 4} \\ -5z\text{ = 15 (5)} \\ \text{z = }(15)/(-5) \\ z\text{ = -3} \end{gathered}

Step 3:

From equation 4, find the value of y.


\begin{gathered} y\text{ - z = 5} \\ y\text{ - (-3) = 5} \\ y\text{ + 3 = 5} \\ y\text{ = 5 - 3} \\ y\text{ = 2} \end{gathered}

Step 4:

Substitute y and z in x = 4 + y + 2z to find the value of x.


\begin{gathered} x\text{ = 4 + y + 2z} \\ x\text{ = 4 + 2 + 2(-3)} \\ \text{x = 4 + 2 - 6} \\ x\text{ = 0} \end{gathered}

Final answer

x = 0

y = 2

z = -3

User Soothran
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories