Answer:
703 yds
Step-by-step explanation:
To find the distance (i.e. the values of a), apply trigonometrical ratio.
• The side ,opposite ,angle 50 degrees, BC = a
,
• The side ,adjacent to ,angle 50 degrees, AC = 590 yds
![\tan \theta=\frac{\text{Opposite}}{\text{Adjacent}}](https://img.qammunity.org/2023/formulas/mathematics/college/zh1z0h8h9qwya49ao0kit5o17j5143hqf1.png)
Therefore:
![\begin{gathered} \tan A=(BC)/(AC) \\ \tan 50\degree=(a)/(590) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/84di07lp183c0xdm9lhf1pdyd8cwk0n4u5.png)
Cross multiply:
![\begin{gathered} a=590*\tan 50\degree \\ a=703.13 \\ a\approx703\text{ yds.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dyogd6q72ljmafwufox2gmvcxc81tw5egn.png)
The distance across the lake is 703 yards (to the nearest whole number).