Given:
z1 = 6(cos80 + isin80)
z2 = 8(cos140 + isin140)
Let's solve for the following:
(a) z1/z2
To solve for z1/z2, we have:
![\begin{gathered} (z_1)/(z_2)=(6(\cos 80+i\sin 80))/(8(\cos 140+i\sin 140)) \\ \\ (z_1)/(z_2)=(3(\cos 80+i\sin 80))/(4(\cos 140+i\sin 140)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8v81xzwe5eebtd3ng09pkgfzhreb4wbyop.png)
Solving further:
![(z_1)/(z_2)=(0.521+2.954i)/(-3.064+2.571i)](https://img.qammunity.org/2023/formulas/mathematics/college/wy1w8xut2od5wxlv9irlr1op6r4e4pq3sc.png)
Multiply the denominator and numerator by the conjugate:
![\begin{gathered} (0.521+2.954i)/(-3.064+2.571i)*(-3.064-2.571i)/(-3.064-2.571i) \\ \\ ((0.521+2.954i)(-3.064-2.571i))/((-3.064+2.571i)(-3.064-2.571i)) \\ \\ =(6-10.392i)/(16) \\ \\ =(1)/(16)\ast(6-10.392i)/(1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s2eylamnuux76lshzz4ytjfnuh4llvyjgs.png)
Let's write in trigonometric form:
![\begin{gathered} 0.0625(6-10.392i) \\ \\ 0.0625(6)+0.0625(-10.392i) \\ \\ 0.375-0.649i \\ \\ \lvert z\rvert=\sqrt[]{(-0.649)^2+(}0.375)^2 \\ \\ \lvert z\rvert=\sqrt[]{0.562}=0.749 \\ \\ \tan ^(-1)((-0.649)/(0.375))=-60^o \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hflkj6agw87jii3fspnxv8u881mr2fwvqo.png)
Therefore, the answer in trigonometric form is:
![0.749(\cos (-60^0)+i\sin (-60))](https://img.qammunity.org/2023/formulas/mathematics/college/np994rdiudh3n6ihlr8qwp58a34j3kqa0w.png)
Part b.
![z_1z_2=(6(\text{cos}80+i\sin 80))*(8(\cos 140+i\sin 140))](https://img.qammunity.org/2023/formulas/mathematics/college/4xzjmhglc6cv9uo43k9wa80wuynj09ilof.png)
Thus, we have:
![\begin{gathered} z_1z_2=\mleft(1.042+5.909i\mright)*(-6.128+5.142i) \\ \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7krehc0fks5lj787htvxayeadxer5cdy0j.png)
Apply the FOIL method:
![1.042(-6.128+5.142i)+5.909i(-6.128+5.142i)](https://img.qammunity.org/2023/formulas/mathematics/college/l9jhw3ohnykhd4ndv1apftqcihj1pt62qw.png)
Apply distributive property:
![undefined]()