Answer:
• The numerator is x+5.
,
• The denominator is x+3.
Step-by-step explanation:
Given the expression:
![(\left(x^2-x-6\right))/(\left(2x^2+x-6\right))\cdot(\left(2x^2+7x-15\right))/(\left(x^2-9\right))](https://img.qammunity.org/2023/formulas/mathematics/college/6mprh8hm4v70tuktcv9rgergqvwrvsw481.png)
First, factor each of the quadratic expressions where possible.
![\begin{gathered} ((x^2-3x+2x-6))/((2x^2+4x-3x-6))\cdot((2x^2+10x-3x-15))/((x^2-3^2)) \\ =(x(x-3)+2(x-3))/(2x(x+2)-3(x+2))\cdot\frac{2x(x+5)-3(x+5)}{(x-3)(x+3^{})} \\ =((x-3)(x+2))/((2x-3)(x+2))\cdot\frac{(2x-3)(x+5)}{(x-3)(x+3^{})} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ps1j8v0r5u42skspptuf0t6zhyx5sfh9lh.png)
Next, cancel the common factors in the numerator and denominator:
![\begin{gathered} ((x-3)\mleft(2x-3\mright)(x+2))/((x-3)(2x-3)(x+2))\cdot\frac{(x+5)}{(x+3^{})} \\ =(x+5)/(x+3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vpfpj9873mpunvx399jf1y974lnxddkdmn.png)
• The numerator is x+5.
,
• The denominator is x+3.