To graph the quadratic function you have to determine the coordinates of its vertex and the roots (x-intercepts)
1) To find the roots of the function, the first step is to zero it:
![\begin{gathered} 3x^2+5x-2-15=15-15 \\ 3x^2+5x-17=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ukaqhngwis6h9qx833dhjc5w9eo07gbckd.png)
Next, you have to identify the coefficients of the function:
"a" represents the coefficient of the squared term, for this function a= 3
"b" is the coefficient of the x-term, for this function b= 5
"c" is the constant of this function, in this case, c= -17
Use the quadratic function to calculate the possible x-intercepts:
![x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/rxvf73usjbbwyik14knxdemoz21vfz2ufc.png)
Replace the formula with the coefficients:
![\begin{gathered} x=\frac{-5\pm\sqrt[]{5^2-4\cdot3\cdot(-17)}}{2\cdot3} \\ x=\frac{-5\pm\sqrt[]{25+204}}{6} \\ x=\frac{-5\pm\sqrt[]{229}}{6} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u2ouefu4mtde9efzwydwejinsupsp5s3jj.png)
Solve the addition and subtraction separately:
Addition:
![\begin{gathered} x=\frac{-5+\sqrt[]{229}}{6} \\ x=1.689 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qnlt5xp3ui1ftbwvj9wf1olaowivgpjy7a.png)
Subtraction:
![\begin{gathered} x=\frac{-5-\sqrt[]{229}}{6} \\ x=-3.355 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k2ee5n3hch93jnjcbtvmoppdutyltmg9kd.png)
The roots of the function are x=1.689 and x=-3.355
2) To determine the coordinates of the vertex, you have to use the following formula to determine the x-coordinate (h):
![h=(-b)/(2a)](https://img.qammunity.org/2023/formulas/mathematics/college/3le0mskreb8bknknkflczekjzgmt1dnwbr.png)
Replace it with b=5 and a=3
![h=-(5)/(2\cdot3)=-(5)/(6)](https://img.qammunity.org/2023/formulas/mathematics/college/p7puhofudxxxhlh6n103xuijaxfwzf5dw7.png)
Next, replace the value of x into the function to calculate the corresponding y-coordinate (k)
![\begin{gathered} k=3x^2+5x-17 \\ k=3(-(5)/(6))^2+5\cdot(-(5)/(6))-17 \\ k=3\cdot(25)/(36)-(25)/(6)-17 \\ k=(25)/(12)-(25)/(6)-17 \\ k=-(229)/(12)\approx-19.083 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5wexp1umzev6s1sytcouvsf0dhlkbwlk06.png)
The coordinates of the vertex are (-0.833,-19.083)
Plot the points and graph the quadratic function:
Note that the coefficient of the quadratic term is positive, this indicates that the parabola opens upwards.