164k views
5 votes
If 2x+3 – 2^x = k(2^x), what is the value of k?

If 2x+3 – 2^x = k(2^x), what is the value of k?-example-1
User Jmdeldin
by
4.1k points

1 Answer

4 votes

The equation given is:


2^(x+3)-2^x=k(2^x)

We can use the property:


a^(b+c)=a^ba^c

to break this apart. Shown below:


\begin{gathered} 2^(x+3)-2^x=k(2^x) \\ 2^x2^3-2^x=k(2^x) \end{gathered}

We can solve for k [we divide both sides by 2^x to isolate k]:


\begin{gathered} 2^x2^3-2^x=k(2^x) \\ k=(2^x2^3-2^x)/(2^x) \end{gathered}

Now, let's do a little algebra. The steps are shown below:


\begin{gathered} k=(2^x2^3-2^x)/(2^x) \\ k=(2^x2^3)/(2^x)-(2^x)/(2^x) \\ k=2^3-1 \\ k=8-1 \\ k=7 \end{gathered}

The correct answer is

C
User Pablo Herrero
by
4.2k points