46.8k views
3 votes
Match each equation to the number of distinct, real solution it has

Match each equation to the number of distinct, real solution it has-example-1

1 Answer

1 vote

a) We have the equation


\begin{gathered} x^2=49 \\ x=\sqrt[]{49} \\ x=\pm7\text{ (two real solutions: -7 and +7)} \end{gathered}

b) This equation is similar to a), and have 2 real solutions.


\begin{gathered} x^2-74=0 \\ x^2=74 \\ x=\sqrt[]{74} \\ x\approx\pm8.6 \end{gathered}

c) This equation can be factorized as:


\begin{gathered} x^2-10x+25 \\ x^2-2\cdot5x+5^2 \\ (x-5)^2 \end{gathered}

It has one real solution (x=5).

d)


\begin{gathered} 3x^2-6x=29 \\ 3x^2-6x-29=0 \\ x=\frac{6\pm\sqrt[]{36-4\cdot3\cdot(-29)}}{2\cdot3}\text{ \lbrack{}applying the quadratic equation for the roots\rbrack} \\ x=(6)/(6)\pm\frac{\sqrt[]{36+348}}{6} \\ x=1\pm\frac{\sqrt[]{384}}{6}\longrightarrow\text{ Two real solutions.} \end{gathered}

e)


\begin{gathered} 2x^2-6x+10=0 \\ 2(x^2-3x+5)=0 \\ x^2-3x+5=0 \\ x=\frac{-(-3)\pm\sqrt[]{(-3)^2-4\cdot1\cdot5}}{2\cdot1} \\ x=(3)/(2)\pm\frac{\sqrt[]{9-20}}{2} \\ x=(3)/(2)\pm\frac{\sqrt[]{-11}}{2} \\ x=(3)/(2)\pm\frac{\sqrt[]{11}}{2}\cdot\sqrt[]{-1} \\ x=(3)/(2)\pm\frac{\sqrt[]{11}}{2}i\longrightarrow\text{ Two complex solutions (not real)} \end{gathered}

User Bill Burdick
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories