![\bold{\huge{\green{\underline{ Solution }}}}](https://img.qammunity.org/2023/formulas/mathematics/middle-school/ehsj9p3cojbrgq3el5as8go1jpc0cojvs5.png)
Given :-
- The height of the cylinder is 26 cm
- The base of the cylinder is 12cm
- The base diameter of hemisphere is 12cm
To Find :-
- We have to find the volume of composite solid.
Let's Begin :-
For cylinder,
- Height = 26 cm
- Base diameter = 12cm
Therefore,
The radius of the cylinder will be
![\sf{=} {\sf{( Diameter)/(2)}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/yaums3teokuj3zzdixsmkr2zlx7ho7ho5b.png)
![\sf{=}{\sf{( 12)/(2)}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/hexcfcelqvq5ll1hjzcjzqwxsntlymo8uj.png)
![\sf{ = 6 cm}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xhze2p7zk22vwjvjhhaw4xghuipdnlb2bo.png)
Thus, The radius of cylinder is 6 cm
Now, we know that,
Volume of cylinder = πr²h
Subsitute the required values,
![\sf{ = 3.14 × 6 × 6 × 26}](https://img.qammunity.org/2023/formulas/mathematics/high-school/v8hioeg5o415bp8n0xrsjn8wua8d15g8uh.png)
![\sf{ = 2939.04 cm³}](https://img.qammunity.org/2023/formulas/mathematics/high-school/hgxatdtlflyzq2k004gguab9uvl9xf3ujv.png)
Now, For Hemisphere
Therefore,
The radius of the hemisphere will be
![\sf{=} {\sf{( Diameter)/(2)}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/yaums3teokuj3zzdixsmkr2zlx7ho7ho5b.png)
![\sf{=}{\sf{( 12)/(2)}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/hexcfcelqvq5ll1hjzcjzqwxsntlymo8uj.png)
![\sf{ = 6 cm}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xhze2p7zk22vwjvjhhaw4xghuipdnlb2bo.png)
We know that,
Volume of hemisphere = 2/3πr³
Subsitute the required values,
![\sf{ = 2/3× 3.14 × 6 × 6 × 6}](https://img.qammunity.org/2023/formulas/mathematics/high-school/bw40784i07oplara1grdcztsimk1pon7zk.png)
![{\sf{=}}{\sf{( 1356.48)/(3)}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/e1ulfgx20vin3ehuz2bp38rj6qpuv1469m.png)
![\sf{ = 452.16 cm³}](https://img.qammunity.org/2023/formulas/mathematics/high-school/20j3kgkb4acyieviwvng1z44j9k9m0848t.png)
Thus, The volume of hemisphere is 452.16 cm³
Therefore ,
Area of composite solid
![\sf{ = 2939.04 + 452.16}](https://img.qammunity.org/2023/formulas/mathematics/high-school/uexv50vquyeqjnqfgs547zsg6sswllmy9h.png)
![\sf{ = 3391.2 cm³}](https://img.qammunity.org/2023/formulas/mathematics/high-school/giimw7nuqovjdaqipqcvjo153dajphvafh.png)
![\sf{ = 3391 cm³}](https://img.qammunity.org/2023/formulas/mathematics/high-school/h2sbuifgcdhk7s4nn3cp049aukt8eqtoyu.png)
Hence, The total volume of composite solid is 3391 cm³