174k views
5 votes
Find the perimeter and the area of right triangle ABC with vertices A(-3,-4), B(13,8) and C(22,-4).what type of triangle is it?Show your work.#2PerimeterArea

User Theodore
by
8.9k points

1 Answer

2 votes

Perimeter of the triangle = 60

Area of the triangle = 150

The triangle is a scalene triangle

Step-by-step explanation:

The given vertices: A(-3,-4), B(13,8) and C(22,-4)

To get the perimeter and the area, we need to find the distance of the three sides of the triangle.

We will find the distance between A and B, B and C and A and C

The distance formula is given by:


dis\tan ce\text{ = }\sqrt[]{(y_2-y_1)^2+(x_2-x_1)^2}
\begin{gathered} \text{For distance AB:} \\ x_1=-3,y_1=-4,x_2=13,y_2\text{ = }8 \\ \text{distance AB = }\sqrt[]{(8-(-4))^2+(13-(-3))^2} \\ \text{distance AB =}\sqrt[]{(8+4)^2+(13+3)^2}\text{ = }\sqrt[]{12^2+16^2} \\ \text{distance AB = }\sqrt[]{400}\text{ = 20} \end{gathered}
\begin{gathered} \text{For distance BC:} \\ x_1=13,y_1=8,x_2=22,y_2\text{ = }-4 \\ dis\tan ce\text{ BC= }\sqrt[]{(-4-8)^2+(22-13)^2} \\ \text{distance BC = }\sqrt[]{(-12)^2\text{ }+9^2}\text{ = }\sqrt[]{225} \\ \text{distance BC = 15} \end{gathered}
\begin{gathered} \text{distance AC:} \\ x_1=-3,y_1=-4,x_2=22,y_2\text{ = }-4 \\ dis\tan ce\text{ AC= }\sqrt[]{(-4-(-4))^2+(22-(-3))^2} \\ \text{distance AC = }\sqrt[]{(-4+4)^2+(22+3)^2}\text{ = }\sqrt[]{0^2+25^2} \\ \text{distance AC = }\sqrt[]{625}\text{ = 25} \end{gathered}

We have gotten the three sides:

AB = 20, BC = 15, AC = 25

Perimeter of a triangle = sum of all three sides

Perimter = AB + BC + AC

Perimeter = 20 + 15 + 25

Perimeter of the triangle = 60

To get the area of the triangle, we will use Heron's formula:


\begin{gathered} \text{Area = }\sqrt[]{s(s-a)(s-b)(s-c)} \\ \text{where s = }\frac{a\text{ + b + c}}{2} \end{gathered}
\begin{gathered} u\sin g\text{ the variables we have:} \\ \text{s = }\frac{AB\text{ + BC + AC}}{2} \\ s\text{ = }(20+15+25)/(2)\text{ = 60/2} \\ s\text{ = 30} \\ \\ \text{Area = }\sqrt[]{s(s-AB)(s-BC)(s-AC)} \\ \text{Area = }\sqrt[]{30(30-20)(30-15)(30-25)} \end{gathered}
\begin{gathered} \text{Area = }\sqrt[]{30(10)(15)(5)} \\ \text{Area = }\sqrt[]{22500} \\ Area\text{ of the triangle = }150 \end{gathered}

None of the three sides of the triangle are equal.

A triangle with three sides that are not equal is a scalene triangle.

Hence, the triangle is a scalene triangle

Find the perimeter and the area of right triangle ABC with vertices A(-3,-4), B(13,8) and-example-1
User Neysa
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories