187k views
5 votes
I need help on this question

1 Answer

4 votes

We need to complete the square of the next two equations:


\begin{gathered} x^2-4x \\ \text{and} \\ y^2-6y \end{gathered}

We know that:


(x-2)^2=x^2+2\cdot x\cdot(-2)+(-2)^2=x^2-4x+4

and:


(y-3)^2=y^2+2\cdot y\cdot(-3)+(-3)^2=y^2-6y+9

Adding and subtracting 4 and 9 to the original equation, we get:


\begin{gathered} x^2+y^2-4x-6y+8=0 \\ x^2+y^2-4x-6y+8+4-4+9-9=0 \\ (x^2-4x+4)+(y^2-6y+9)+(8-4-9)=0 \\ (x-2)^2+(y-3)^2-5=0 \\ (x-2)^2+(y-3)^2=5 \end{gathered}

This equation has the next form:


(x-h)^2+(y-k)^2=r^2

which corresponds to a circle centered at (h,k) with radius r. Then, in our equation, the center is (2,3) and the radius is √5.

User Hanumath
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories