Given: An absolute inequality
![\lvert{2x+3}\rvert=15](https://img.qammunity.org/2023/formulas/mathematics/college/y4pkdgr0ndi4321y49rdyjjoj3r0f35hjt.png)
Required: To solve the given absolute inequality.
Step-by-step explanation: The absolute rule states
![\begin{gathered} If\text{ }\lvert{x}\rvert=a,\text{ }a>0\text{ ,then} \\ x=a\text{ or }x=-a \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xba6swks6poa5jc0j3cbxezegq557m11xm.png)
Hence for the given problem, we have
![2x+3=15\text{ or }2x+3=-15](https://img.qammunity.org/2023/formulas/mathematics/college/3b0y3mbgbvnhlf0wtwm0891x3kqcys52ax.png)
Solving these two equations
![\begin{gathered} 2x=12\text{ or }2x=-18 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/400s7rrzdfw89ytksljmcikkofdj9pm2a4.png)
Which gives the value of x as
![x=6\text{ or }x=-9](https://img.qammunity.org/2023/formulas/mathematics/college/7ur5hcsvpd7zvmn4003cpvgmpweh1mu1v0.png)
Hence the equation given can have two solutions.
Final Answer: The given equation can have two solutions as x=6 or x=-9.