202k views
3 votes
Hi, can you help me answer this question please, thank you

1 Answer

3 votes

From the given data;


\begin{gathered} \text{ sample size, n=43} \\ \text{ sample mean, }\bar{x}=64 \\ \text{ population standard deviation,}\sigma=14.1 \end{gathered}
\begin{gathered} \text{significance level,}\alpha=1-confidence\text{ interval} \\ \alpha=1-0.9 \\ \alpha=0.1 \end{gathered}
The\text{ critical value}=z_{(\alpha)/(2)}=z_{(0.1)/(2)}=z_(0.05)=1.645\text{ ( from the }z-table)
\begin{gathered} \text{Therefore,} \\ critical\text{ value}=\pm z_{(\alpha)/(2)}=\pm1.645 \end{gathered}
\text{Margin of error, E=}z_{(\alpha)/(2)}*\frac{\sigma}{\sqrt[]{n}}
\begin{gathered} E=1.645*\frac{14.1}{\sqrt[]{43}} \\ E=1.645*2.1502 \\ E=3.5371 \end{gathered}

Limits of 90% confidence interval are given by:


\begin{gathered} \text{lower limit}=\bar{x}-E \\ \text{lower l}imit=64-3.5371 \\ \text{lower limit=60.463} \end{gathered}
\begin{gathered} upper\text{ limit=}\bar{\text{x}}+E \\ \text{upper limit=64+3.5371} \\ \text{upper limit=67.5371} \end{gathered}

Hence, the 90% confidence interval for the true population mean textbook weight is:


60.463<\mu<67.5371

User MPV
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories