196k views
1 vote
Sketch the graph, showing one complete cycle. State the period and amplitude, and the greatest and least values of yy=3sin(θ−π/2)

User Mayas
by
4.7k points

1 Answer

3 votes
Step-by-step explanation:

Consider the following general periodic function:


y=a\sin b(\theta\text{ -h})\text{ +k}

where

a= amplitude

b = frecuency

h= phase translation

k= vertical translation

2π/ |b| = period

Now, consider the following periodic function:


y=3sin(\theta\text{ -}(\pi)/(2))

Applying the definition given at the beginning of this explanation, we can see that:

a = amplitude = 3

2π/ |b| = period = 2π/|1| = 2π

Then, the graph of the given function is:

Notice that the greatest and least values of y are 3 and -3 respectively.

We can conclude that the correct answer is:

Answer:

Graph:

Period:


2π

Amplitude:


3

The greatest value of y (coordinate y of the maximum point):


3

The least value of y (coordinate y of the minimum point):


\text{ -3}

Sketch the graph, showing one complete cycle. State the period and amplitude, and-example-1
User The Cookies Dog
by
4.6k points