Given:
Create a unique parabola in the pattern f(x) =( x-a)(x-b).
Required:
Describe the direction of the parabola and determine the y-intercept and zeros.
Step-by-step explanation:
Lets first learn some concepts:
Direction of the parabola can be determined by the value of a. If a is positive, then the parabola faces up (making a u shaped). If a is negative, then the parabola faces down (upside down u).
Y-intercept:
To find the y-intercept, set x = 0 and solve for y.
Zeros:
The zeros of a function are the values of x when f(x) is equal to 0.
We have function
![f(x)=(x-a)(x-b)](https://img.qammunity.org/2023/formulas/mathematics/college/gbwdz7y4f8lhdxa4h5dq3qki2127st5opn.png)
![\begin{gathered} \text{ Direction of parabola}: \\ f(x)=x^2-(a+b)x+ab \\ \text{ Here, Leading coefficient is 1. So, direction of parabola will be upward.} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dngo7bvv0vi1089soyo1fpqqql6qowaffr.png)
![\begin{gathered} Y-intercept: \\ \text{ Put }x=0\text{ and we will get }y=ab \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yeaiqn4333nbchqvmjfqjgxstr6f76vzv6.png)
![\begin{gathered} Zeros: \\ (x-a)(x-b)=0 \\ x=a,x=b \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pzt01qb6uokaiuoh8c1uobgvd5qiyzdlkh.png)
Answer:
The direction of parabola is upward, y intercept equals ab and zeros are x = a, b.