Part (a)
The initial momentum of the system can be expressed as,
![p_i=m_1u_1+m_2u_2](https://img.qammunity.org/2023/formulas/physics/college/1gmt8x4y25pwwrgu2qb14c5hmsw9pyvt36.png)
If the bullet is embedded in the block then the final moemntum of the system can be given as,
![p_f=(m_1+m_2)v](https://img.qammunity.org/2023/formulas/physics/college/dcymceodnca6v5uil6q80czg29fgfocxii.png)
According to conservation of momentum,
![p_i=p_f](https://img.qammunity.org/2023/formulas/physics/college/e7rj8yeigkhgmt4s6ul64ny08zwwhw91ko.png)
Plug in the known expressions,
![\begin{gathered} m_1u_1+m_2u_2=(m_1+m_2)v \\ v=(m_1u_1+m_2u_2)/(m_1+m_2) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/b0zy5129lyokm7btetm89ceemyi3w5dy9j.png)
Substitute the known values,
![\begin{gathered} v=\frac{(19.6\text{ g)(318 m/s)+}(291\text{ g)(0 m/s)}}{19.6\text{ g+291 g}} \\ =\frac{6232.8\text{ gm/s}}{310.6\text{ g}} \\ \approx20.1\text{ m/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/a0oyvdva0e9utne8dv92o3n7cmti9z18ii.png)
Thus, the final velocity of bullet after it is embedded in the block is 20.1 m/s.
Part (b)
The change in momentum of the system can be given as,
![\Delta p=p_f-p_i](https://img.qammunity.org/2023/formulas/physics/college/gm7xafszow6tuh7bq80akwmxbvopt8lu7m.png)
Substitute the known expressions,
![\Delta p=(m_1+m_2)v-(m_1u_1+m_2u_2)](https://img.qammunity.org/2023/formulas/physics/college/2yg5z5l6i8bovyqroh1x9fyi6vw0fslzcj.png)
Substitute the known values,
![\begin{gathered} \Delta p=(19.6\text{ g+291 g)(20.1 m/s)-((19.6 g)(318 m/s)+(291 g)(0 m/s))} \\ =6243.06\text{ gm/s-}6232.8\text{ gm/s}-0\text{ g m/s} \\ =(10.26\text{ gm/s})(\frac{1\text{ kg}}{1000\text{ g}}) \\ \approx0.010\text{ kgm/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/jxjal5m5j25jb22r5n2h0p4einyxut4y64.png)
Thus, the change in the momentum of the system is 0.010 kgm/s.
Part (c)
The change in the momentum of the bullet can be expressed as,
![\Delta p=mu_{}-mv](https://img.qammunity.org/2023/formulas/physics/college/skkqjwu6roafzdhjjbafb1rtu1x4z6mlb7.png)
The final speed is in the opposite direction therefore, it will be taken as negative.
Plug in the known values,
![\begin{gathered} \Delta p=(19.6\text{ g)(318 m/s)-(}19.6\text{ g)(-299 m/s)} \\ =6232.8\text{ gm/s+}5860.4\text{ gm/s} \\ =(12093.2\text{ gm/s)(}\frac{1\text{ kg}}{1000\text{ g}}) \\ \approx12.1\text{ kgm/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ilzsl8ozh7tvwz8qvkwe91lz03bwomz2o9.png)
Thus, the change in the momentum of the bullet is 12.1 kgm/s.