In general, the standard form of an ellipse centered at (h,k) is
![((x-h)^2)/(a^2)+((y-k)^2)/(b^2)=1](https://img.qammunity.org/2023/formulas/mathematics/college/l0626bn68eeug6hf6kdo2ks0r7t63wrkx6.png)
In our case, given
![4x^2+40x+25y^2-100y+100=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/afeqzrz2ja79qw049irn6god8xu2eikdvl.png)
Complete squares as shown below
![\begin{gathered} 4x^2+40x=(2x)^2+2(2x)p \\ \Rightarrow40x=4px \\ \Rightarrow p=10 \\ \Rightarrow4x^2+40x+100=(2x+10)^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ge1zu24b8hyot3lxe2n7u092pqd1rq6dwd.png)
Similarly,
![\begin{gathered} 25y^2-100y=(5y)^2+2\cdot q\cdot5y \\ \Rightarrow-100=10q \\ \Rightarrow q=-10 \\ \Rightarrow25y^2-100y+100=(5y-10)^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/8k0jqm053ix2axspvp5iowcwkxutj6it2p.png)
Thus, the initial expression can be transform in the following way,
![\begin{gathered} \Rightarrow4x^2+40x+25y^2-100y+100+100=0+100 \\ \Rightarrow(2x+10)^2+(5y-10)^2=100 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/2zmgafcaa2piizhnjrf4cubdglry9tuz1m.png)
Therefore,
![\begin{gathered} \Rightarrow2^2(x+5)^2+5^2(y-2)^2=100 \\ \Rightarrow(2^2(x+5)^2+5^2(y-2)^2)/(100)=1 \\ \Rightarrow((x+5)^2)/(25)+((y-2)^2)/(4)=1 \\ \Rightarrow((x+5)^2)/(5^2)+((y-2)^2)/(2^2)=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/r8z8py5ff9e0024b3azblftbwf8i6dtfzb.png)
This last line is the standard form of the ellipse.
Notice that it is centered at (-5,2), the major axis is equal to 5 and the minor one is equal to 2. Therefore, the endpoints are
![\begin{gathered} (-5+5,2)=(0,2) \\ (-5-5,2)=(-10,2) \\ (-5,2-2)=(-5,0) \\ (-5,2+2)=(-5,4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/prm83vhbfxy0qc6a0qu3jhbvr2m877xhmz.png)
Finally, as for the foci, we can find them given the major and minor axis using the formula below
![\begin{gathered} c=\sqrt[]{a^2-b^2} \\ (\pm c-5,2)\to foci \\ a\to\text{major axis} \\ b\to\text{ minor axis} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/6p095nudh7dqz3wv85puq9iju9od3gg7y1.png)
![\begin{gathered} \Rightarrow c=\sqrt[]{25-4}=\sqrt[]{21} \\ \Rightarrow(-\sqrt[]{21}-5,2),(\sqrt[]{21}-5,2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/7mzp11sxu4pr95dauf7378nmybr7r97ixi.png)
Foci: (-sqrt21-5,2), (sqrt21-5,2)