Check below, please.
1) The sign rules are practical rules that tell us the sign in each operation.
2) So, let's enlist them providing an example of each:
Multiplication and Divison
"If the signs of each multiplier/dividend and multiplicand/divisor are the same then the product is positive.":
![\begin{gathered} (-2)*(-4)=8 \\ 2*4=8 \\ \\ (-2)/(-4)=(1)/(2) \\ (2)/(4)=(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zbclp4az04nypxeatjushiftm49g9bnm45.png)
On the other hand, "If the signs of each multiplier/dividend and multiplicand/divisor are different then the product/quotient is negative."
![\begin{gathered} (-2)*(4)=-8 \\ 2*-4=-8 \\ (-2)/(4)=-(1)/(2) \\ (2)/(-4)=-(1)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8hxextnfiaru0wkvqojc2xpkr5e4tig7iy.png)
Addition:
"The magnitude of the addend indicates the sign". The greatest absolute value indicates the sign of the sum:
![\begin{gathered} 2+4=6 \\ 2+(-4)=-2 \\ -7+4=-3 \\ 7+(-4)=7-4=3_{} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i9rkmic0nah1go2p24jyoa0x83i7n2n8xn.png)
Subtraction
Similarly to addition, the greatest absolute value (or magnitude) is going to tell the sign of the subtraction:
![\begin{gathered} 7-4=3 \\ -7+4=-3 \\ -7-4=-11 \\ 2-(-4)=2+4=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/j2hrhc29mcfiuxp67yzafy0aidhptmkuhy.png)