Answer:
166.3 square yards
Step-by-step explanation:
A regular hexagon has 6 equal sides.
Given that the perimeter = 48 yards
The side length, s:
![\begin{gathered} s=(48)/(6) \\ s=8\text{ yards} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/if9duvb85ils47uhi8opbnpe633azx6d5p.png)
Next, we use the formula below for the area of a regular hexagon:
![A=\frac{3\sqrt[]{3}}{2}s^2](https://img.qammunity.org/2023/formulas/mathematics/college/p9jr4ioaqqbgapb4k9h1qtqi59sm9aoo5g.png)
Substitute 8 for s:
![\begin{gathered} A=\frac{3\sqrt[]{3}}{2}*8^2 \\ =96\sqrt[]{3} \\ \approx166.3\; yd^2\text{ (to the nearest tenth)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/lrfzwh6olfgnmak7pajzwbhuzfbz8si346.png)
The area of the regular hexagon is 166.3 square yards.
Method 2
A regular hexagon is divided into 6 equilateral triangles.
In this case:
The side length of the equilateral triangle = 8 yards
First, find the value of the height, h using the Pythagoras Theorem.
![\begin{gathered} 8^2=4^2+h^2 \\ h^2=8^2-4^2 \\ h^2=64-16 \\ h^2=48 \\ h=√(48) \\ h=6.93\text{ yds} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w4x3blrns2anx9tp355xfb6969jeunl8j8.png)
Next, find the area of one equilateral triangle:
![\begin{gathered} \text{Area}=(1)/(2)*\textcolor{red}{base}*\textcolor{green}{height} \\ =(1)/(2)*\textcolor{red}{8}*\textcolor{green}{6.93} \\ =27.72\; yd^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ajmyah41z1538mm05ulhbyhd2pdjik2ed7.png)
Since there are 6 equilateral triangles in the hexagon:
![\begin{gathered} \text{Area of the hexagon=6}* Area\text{ of one equilateral triangle} \\ =6*27.72 \\ =166.3\; yd^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/galdv8s3gopbof21knykcs8tbbir97j357.png)
The area of the regular hexagon is 166.3 square yards.