We are required to find the equation of a straight line passing through two given points .
First we can calculate the gradient / slope
![\begin{gathered} x_1=-2 \\ y_1=3 \\ x_2=4 \\ y_2=15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n72irocrtsmf68a7sw8zl4wulm8tx3pthm.png)
Calculating slope(m) below
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/78uaqhwt0aws3qfwxigaftpihnmb1gzxtp.png)
![\begin{gathered} m=(15-3)/(4-(-2)) \\ m=(12)/(6) \\ m=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/tlbo7rknen1gpg2oua7zkzm5g9f7vj7ta0.png)
Using the formula y = mx + c at the point any of the two given points .... we can use ( 4 , 15 ) ... we have
![\begin{gathered} y=2x+c \\ x=4,y=15 \\ 15=2(4)+c \\ 15=8+c \\ c=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4ddy5m3uu4x87djkw3mei5srgatkxth5m6.png)
The required straight line equation will be obtained using y=mx+c as;
![y=2x+7](https://img.qammunity.org/2023/formulas/mathematics/college/h96e3ycuuigtji648n3g8wqhke6s5huv8f.png)
Here is a graph of the line
Hence the equation of the line is y=2x + 7