Answer:
![a_n=80\cdot((-1)/(4))^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/dgrbltkcgqia0l04rwdn49tnqwqr5z59uw.png)
Step-by-step explanation:
We can see that 20 is equal to 80 divided by 4 and 5 is equal to 20 divided by 4. Additionally, the sign change for every term. So, the explicit formula for an is:
![a_n=80\cdot((-1)/(4))^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/dgrbltkcgqia0l04rwdn49tnqwqr5z59uw.png)
So, we can prove that this equation applies for the first 3 terms as:
![\begin{gathered} a_1=80\cdot((-1)/(4))^(1-1)=80 \\ a_2=80\cdot((-1)/(4))^(2-1)=-20 \\ a_3=80\cdot((-1)/(4))^(3-1)=5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7t7jiich5rli454j8bbgezeyqxofd9903q.png)
Therefore, the answer is:
![a_n=80\cdot((-1)/(4))^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/dgrbltkcgqia0l04rwdn49tnqwqr5z59uw.png)