Answer:
(x-5)(x+12).
Step-by-step explanation:
Given the polynomial:
![7x-60+x^2](https://img.qammunity.org/2023/formulas/mathematics/college/bph1bpanshg72t8wydtxtyicq7xhp3t92i.png)
First, we write it in the standard form of a polynomial:
![x^2+7x-60](https://img.qammunity.org/2023/formulas/mathematics/college/s19r11025yve76gz0yjgkmnlwauo6qhrst.png)
Next, multiply the first and last term:
![x^2*-60=-60x^2](https://img.qammunity.org/2023/formulas/mathematics/college/7h7w8jvpmc8i2xoej8ltjk4f66y1tmemvv.png)
Pick factors of the product that add up to the middle term:
![\begin{gathered} -60x^2=12x\text{ and -5x} \\ 12x-5x=7x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/83ijm2ecw6j1a7nlmgp4b3lg4p55dqpb00.png)
Therefore:
![\begin{gathered} x^2+7x-60=x^2+12x-5x-60 \\ =x(x+12)-5(x+12) \\ =(x-5)(x+12) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fwh0g8vouwyhem9vyem5alhui1cltsw1qt.png)
The factored form of the polynomial is (x-5)(x+12).
Note: A polynomial is prime if it cannot be factored. Since the example above can be factored, it is not prime.