we have the polar equation
![r=5sin(4\theta)](https://img.qammunity.org/2023/formulas/mathematics/high-school/zuzjky1b9w5plzg1xlmc2lol1b4hangc88.png)
using a graphing tool
The arc length is given by the formula
![L=\int_a^b\sqrt{(r^(\prime)(\theta)^2+(r(\theta))^2}\text{ }d\theta](https://img.qammunity.org/2023/formulas/mathematics/high-school/dcmvhimzypgnnevgvjolbolcseojjs2yo6.png)
where
Find out r' (a derivative of r)
![r^(\prime)(\theta)=20cos(4\theta)](https://img.qammunity.org/2023/formulas/mathematics/high-school/94r030bl6sk6nkocqp8rcn3g8xzzas4fo7.png)
a=0
b=pi/4
substitute given values in the formula
![\begin{gathered} L=\int_0^{(pi)/(4)}√((20cos(4\theta))^2+(5sin(4\theta))^2)\text{d}\theta \\ L=\int_0^{(pi)/(4)}√(400cos^2(4\theta)+25sin^2(4\theta))\text{d}\theta \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/86ktj470dnoaslc3moitejz2l9h9byh0lu.png)
Solve the integral
The answer is
one minute, please
The arc length is L=10.723 units (three decimal places)