1) 6, 12,18,24
The rule used here is: Arithmetic Progression or Linear sequence
From the data above:
a = 6, d = 6
![\begin{gathered} T_{n\text{ }}=\text{ a + (n-1)d} \\ \text{where n = 20} \\ T_{20\text{ }}=\text{ a + (20-1)d} \\ T_{20\text{ }}\text{ = a + 19d} \\ T_{20\text{ }}\text{ = 6 + 19}*6 \\ T_{20\text{ }}\text{ = 6 + 114} \\ T_{20\text{ }}\text{ = 120} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ylew8g1pfprxchr8dj3b3jggq3t65jowsx.png)
2) 3,6,9,12
The rule used here is: Arithmetic Progression or Linear sequence
From the data above:
a = 3, d = 3
![\begin{gathered} T_{n\text{ }}=\text{ a + (n-1)d} \\ \text{where n = 20} \\ T_{20\text{ }}=\text{ a + (20-1)d} \\ T_{20\text{ }}\text{ = a + 19d} \\ T_{20\text{ }}\text{ = 3 + 19 }*3 \\ T_{20\text{ }}\text{ = 3 + 57} \\ T_{20\text{ }}\text{ = 60} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wnwtnz4ikgg5rern6dqofpf00aows6pstj.png)
3) 1,5,9,13
The rule used here is: Arithmetic Progression or Linear sequence
From the data above:
a = 1, d = 4
![\begin{gathered} T_{n\text{ }}=\text{ a + (n-1)d} \\ \text{where n = 20} \\ T_{20\text{ }}=\text{ a + (20-1)d} \\ T_{20\text{ }}\text{ = a + 19d} \\ T_{20\text{ }}\text{ = 1 + 19 }*4 \\ T_{20\text{ }}\text{ = }1\text{ + 76} \\ T_{20\text{ }}\text{ = }77 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mxix0d2jg2rqbvtk8v9k1su97cytxwxtyk.png)