We are asked to find the angle x as shown in the given figure.
Recall the trigonometric ratio,
![\cos \theta=\frac{\text{adjacent}}{\text{hypotenuse}}](https://img.qammunity.org/2023/formulas/mathematics/college/y2i7uun7v0od4ac181erxpoyrruu3ucp38.png)
With respect to angle x, the adjacent side is 7 ft and the hypotenuse is 15 ft.
Let us substitute these values into the above formula
![\cos x=(7)/(15)](https://img.qammunity.org/2023/formulas/mathematics/college/hd0ie08f89agmj2b690834k9hrsphmkrhm.png)
Take the inverse of cos function
![\begin{gathered} x=\cos ^(-1)((7)/(15)) \\ x=62.2\degree \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1vf158uw9rbquy8fzvsrp0uu9hgatkt592.png)
Therefore, the angle of elevation of the ladder is 62.2