Given:
Density of the solid part = 6.23 x 10³ kg/m³
Let's find the fraction of the specimen's apparent volume that is solid.
Apply the formula:
![(V_s)/(V_r)=(2\rho_w-\rho_a)/(\rho_s-\rho_a)](https://img.qammunity.org/2023/formulas/physics/college/hrgc8vb0b87glbmvfun4jrxqwec1hflu3r.png)
Where:
Vs is the volume of solid in rock
Vr is the volume of rock.
ρa = 1.275 kg/m³
ρw is the density of water = 1000 kg/m³
ρs is the density of solid rock = 6.23 x 10³ kg/m³
Plug in the values in the equation and solve.
We have:
![\begin{gathered} (V_s)/(V_r)=(2*1000-1.275)/(6.23*10^3-1.275) \\ \\ (V_s)/(V_r)=(2000-1.275)/(6230-1.275)=(1998.725)/(6228.725) \\ \\ (V_s)/(V_r)=0.32 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/pgpqu8673ypkpqsijt62pv6cl1yqld7lnt.png)
Therefore, the fraction of the specimen's apparent volume that is solid is 0.32
ANSWER:
0.32