i)When x goes to infinity we get:
![\lim _(x\rightarrow+\infty)P(x)=\lim _(x\rightarrow+\infty)(3x+1)/(x+4)](https://img.qammunity.org/2023/formulas/mathematics/college/3cxz3t4s6qa880xz7plllymw9yacdio91z.png)
Computing the limit we get:
![\lim _(x\rightarrow+\infty)(3x+1)/(x+4)=\lim _(x\rightarrow+\infty)((3x)/(x)+(1)/(x))/((x)/(x)+(4)/(x))=\lim _(x\rightarrow+\infty)(3+(1)/(x))/(1+(4)/(x))=(3+0)/(1+0)=3](https://img.qammunity.org/2023/formulas/mathematics/college/vvlmoja9vc6gtt3iaju9sbq8bg2vpbxqbd.png)
Therefore the fish population tends to 3,000 fishes as x goes to infinity.
ii) The initial population is:
![P(0)=(3\cdot0+1)/(0+4)=(1)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/8qn4917kd8frmy2kznlfw65u0as4pf49q2.png)
which is equal to 1000/4=250 fishes.
iii) This model is restricted to x≥0 because there were no fishes of the same type in the pond before the introduction of the species.